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a b s t r a c t

Endogenous estrogen plays an integral role in the etiology of breast and endometrial cancer, and conceiv-
ably ovarian cancer. However, the underlying mechanisms and the importance of patterns of estrogen
metabolism and specific estrogen metabolites have not been adequately explored. Long-standing
hypotheses, derived from laboratory experiments, have not been tested in epidemiologic research
because of the lack of robust, rapid, accurate measurement techniques appropriate for large-scale stud-
ies. We have developed a stable isotope dilution liquid chromatography–tandem mass spectrometry
(LC–MS2) method that can measure concurrently all 15 estrogens and estrogen metabolites (EM) in urine
and serum with high sensitivity (level of detection = 2.5–3.0 fmol EM/mL serum), specificity, accuracy, and
precision [laboratory coefficients of variation (CV’s) ≤5% for nearly all EM]. The assay requires only extrac-
tion, a single chemical derivatization, and less than 0.5 mL of serum or urine. By incorporating enzymatic
hydrolysis, the assay measures total (glucuronidated + sulfated + unconjugated) EM. If the hydrolysis step
is omitted, the assay measures unconjugated EM. Interindividual differences in urinary EM concentrations
(pg/mL creatinine), which reflect total EM production, were consistently large, with a range of 10–100-
fold for nearly all EM in premenopausal and postmenopausal women and men. Correlational analyses
indicated that urinary estrone and estradiol, the most commonly measured EM, do not accurately rep-
resent levels of total urinary EM or of the other EM. In serum, all 15 EM were detected as conjugates,

but only 5 were detected in unconjugated form. When we compared our assay methods with indirect
radioimmunoassays for estrone, estradiol, and estriol and enzyme-linked immunosorbent assays for 2-
hydroxyestrone and 16�-hydroxyestrone, ranking of individuals agreed well for premenopausal women
[Spearman r (rs) = 0.8–0.9], but only moderately for postmenopausal women (rs = 0.4–0.8). Our absolute
readings were consistently lower, especially at the low concentrations characteristic of postmenopausal
women, possibly because of improved specificity. We are currently applying our EM measurement tech-

niques in several epidemiologic studies of premenopausal and postmenopausal breast cancer.

Published by Elsevier Ltd.
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. Endogenous estrogen and breast, endometrial, and
varian cancer

In the last decade, the evidence that endogenous estrogen levels
re causally related to breast cancer has strengthened substan-
ially. In 2002, a pooled analysis of the worldwide data from
rospective studies, which included 663 women who developed
reast cancer and 1765 women who did not, demonstrated that
isk of postmenopausal breast cancer increased significantly (p
or trend <0.001) with increasing circulating concentrations of
strone sulfate, estrone, and estradiol [1]. For each estrogen, risk
oubled between extreme quintiles. Urinary concentrations of
strogens have also been positively associated with subsequent
isk of postmenopausal breast cancer, with trends in risk reach-
ng statistical significance [2,3]. However, prospective studies have
ot yet conclusively shown an association between circulating or
rinary estrogens and risk of premenopausal breast cancer, quite
ossibly because of the complexity of controlling for variation

n estrogen levels during the menstrual cycle [3,4]. Fewer data
xist for endometrial cancer. In the largest prospective study to
ate, including 247 incident cases of endometrial cancer and 481
ontrols from the European Prospective Investigation into Cancer
nd Nutrition (EPIC), risk of endometrial cancer increased sig-
ificantly with serum concentrations of estrone and estradiol in
ostmenopausal women (p for trend <0.01), but was not clearly
elated in premenopausal women [5]. Among postmenopausal

omen, associations with endometrial cancer seemed stronger

han those with breast cancer, with relative risks reaching 2.7 when
xtreme tertiles of estrone were compared. Only a few small stud-
es of ovarian cancer have been published, and associations with
ndogenous estrogen have been inconsistent [6]. For all three can-

ig. 1. The estrogen metabolites formed by hydroxylation of the parent estrogens, estron
he chemical structures indicates the relative concentration in urine in premenopausal w
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

cers, the mechanisms of estrogen-mediated carcinogenesis have
yet to be defined, and may differ among the three sites.

2. Estrogen metabolism and cancer

Although experimental, clinical, and epidemiologic research
have implicated endogenous estrogens in the etiology of breast
and endometrial cancer, and possibly ovarian cancer, the role
of individual patterns of estrogen metabolism has been largely
unexplored in epidemiologic work [7]. Metabolism of estro-
gens occurs in the liver and kidneys, and in target tissues, and
includes oxidative metabolism (hydroxylation) and conjugative
metabolism (methylation, sulfation, and/or glucuronidation) [8].
Oxidation of the parent estrogens, estrone and estradiol, occurs
at either the 2-, 4- or 16-position of the carbon skeleton to yield
2-hydroxylated, 4-hydroxylated, or 16-hydroxylated estrogens,
respectively (Fig. 1) [9]. At least 15 human cytochrome P450 iso-
forms, phase I enzymes that vary in their distribution across target
tissues, their catalytic activity, and their specificity, are capable
of catalyzing these hydroxylations [10]. Catechol estrogens, with
adjacent hydroxyl groups at the 2- and 3-positions or the 3-
and 4-positions, can be methylated (Fig. 1), which is generally
considered an excretory pathway [11]. 16�-hydroxyestrone can
be further metabolized by reduction and oxidation at the 17-
and 16-positions (Fig. 1). Conjugation with sulfate or glucuronide
moieties is known to modulate the bioavailability of estrogens

and estrogen metabolites (which we refer to jointly as EM).
Sulfation of estrogens may extend the half-life in circulation while
glucuronidation is an important excretory pathway for estrogens.

Estrogen metabolism yields products that are potentially both
estrogenic and genotoxic. Specific estrogen metabolism pathways,

e and estradiol, at the 2-, 4-, or 16-positions of the carbon ring. The relative size of
omen, postmenopausal women, and men [18].
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uch as formation of the 16-hydroxylated estrogens with their
trong hormonal and mitogenic activity, are postulated to increase
reast cancer risk [12]. Alternatively, specific estrogen metabolites,
uch as the reactive catechol estrogens, may function as carcino-
ens by reacting with DNA to form stable or depurinating adducts
7] although it has also been postulated that 2-pathway catechol
strogens may actually be protective since their formation pre-
ludes 16-hydroxylation [13]. The 4-pathway catechol estrogens,
hough substantially less abundant, are potent inducers of DNA
amage in animal and in vitro models and have been hypothe-
ized to increase breast cancer risk [14]. Methylation of catechol
strogens weakens binding to the estrogen receptor, thus reduc-
ng estrogenicity, and prevents reactive quinone formation; both
ffects should reduce cancer risk [11]. Estrogen metabolism pat-
erns may also determine how bioavailable estrogen is in target
issue and how efficiently it is removed from circulation.

. Liquid chromatography–tandem mass spectrometry
LC–MS2) assay for estrogens and estrogen metabolites (EM)

Nine years ago, we decided to attempt a “high risk/high reward”
roject. The laborious “gold standard” mass spectrometry methods
or measuring endogenous steroid hormones were being aban-
oned, and the limitations of commercial radioimmunoassay (RIA),
nzyme immunoassay (EIA), and enzyme-linked immunoassay
ELISA) kits were complicating epidemiologic research on hor-

onal carcinogenesis. Variability over time, between kits, and
mong labs frustrated individual and pooled analyses. Each hor-
one was assayed independently, and required 0.2–1.0 mL and

ubstantial costs per sample. In addition, long-standing hypotheses
bout the importance of individual steroid hormone metabo-
ites and patterns of metabolism, based on experimental research,

ere not being evaluated in epidemiologic studies. Robust, rela-
ively rapid analytic methods capable of characterizing estrogen

etabolism in the large number of biologic samples collected in
pidemiologic research were required.

In a multidisciplinary effort, Drs. Larry Keefer, Tim Veenstra, Xia
u, and Regina Ziegler have collaborated to develop an accurate,
recise, and sensitive high-performance liquid chromatography-
lectrospray ionization-tandem mass spectrometry method for
easuring concurrently the endogenous EM in human serum and
rine [15,16]. The procedure is relatively simple and rapid; it
equires hydrolysis, extraction, and a single chemical derivatiza-
ion, and only 0.5 mL of serum or urine (Fig. 2). Enzymatic hydrolysis
ith Helix pomatia extract removes sulfate and glucuronide

ig. 2. Schematic of liquid chromatography–tandem mass spectrometry procedure
or measuring endogenous estrogens and estrogen metabolites (EM) in serum and
rine samples. Total (conjugated and unconjugated) EM are measured by including
he enzymatic hydrolysis step. Only unconjugated EM are measured if the hydrolysis
tep is omitted. The chemical structure for dansylated estradiol indicates how the
-dimethylamino-naphthalene-5-sulfonyl (dansyl) moiety covalently binds to the
henolic hydroxyl at the 3-position, a defining characteristic of all EM.
& Molecular Biology 121 (2010) 538–545

residues from the EM. Omitting the hydrolysis step enables
us to measure the quantities of unconjugated EM. The single
derivatization adds a bulky, charged dansyl (1-dimethylamino-
naphthalene-5-sulfonyl) group to the phenolic hydroxyl at the
3-position on each EM. This reactive hydroxyl, characteristic of all
estrogens, enables our technique to measure not only the parent
estrogens but also all the estrogen metabolites. The dansylation
is critical since mass spectrometry separates and detects com-
pounds on the basis of charge and molecular weight, and does not
perform efficiently with neutral, fat-soluble compounds, such as
steroids. Electrospray ionization is utilized to gently convert com-
plex biological solutions into gas phase ions and link the liquid
chromatography to the mass spectrometer. In order to identify
unique, well-resolved peaks for each EM, many of which are chem-
ically very similar, we incorporate tandem mass spectrometry, in
which a second fragmentation and separation is applied to the ions
generated by the initial fragmentation. Finally, a defining charac-
teristic of our approach is reliance on stable isotope dilution. We
add stable 2H- or 13C-labeled EM standards at the beginning, before
hydrolysis, so that we can quantitatively correct for loss or degra-
dation during all steps of the procedure.

With our LC–MS2 technique, we can simultaneously measure
the absolute quantities of the two parent EM, estrone and estra-
diol; the two catechol and three methylated catechol EM in the
2-hydroxylation pathway (2-hydroxyestrone, 2-hydroxyestradiol
and 2-methoxyestrone, 2-methoxyestradiol, 2-hydroxyestrone-3-
methyl ether); the one catechol and two methylated catechol
EM in the 4-hydroxylation pathway (4-hydroxyestrone and
4-methoxyestrone, 4-methoxyestradiol); and the five EM in
the 16-hydroxylation pathway (16�-hydroxyestrone, estriol, 17-
epiestriol, 16-ketoestradiol, 16-epiestriol) (Fig. 1).

Mass spectrometry techniques are increasingly viewed as the
most promising approach for improving sensitivity, specificity,
accuracy, and precision in steroid hormone measurement, and the
“gold standard” against which traditional RIA, EIA, and ELISA should
be compared [17]. Our LC–MS2 assays for EM in serum and urine
offer the advantages of mass spectrometry and, in addition, analyse
parent estrogens and a wide variety of their metabolites in a single
run.

4. EM in urine

In 2005, we published our LC–MS2 technique for the simulta-
neous measurement of the absolute quantities of 15 urinary EM,
which are presented in Fig. 1 [16]. Because EM are mostly present
in urine as glucuronide or sulfate conjugates, we are currently
measuring total EM, the sum of the glucuronidated, sulfated, and
unconjugated forms of each EM. The conjugated EM within each
urine sample are enzymatically hydrolyzed after addition of the
isotopically labelled standards. We start with 0.5 mL of urine, and
10% is eventually placed on the column. The lower level of quan-
titation for each EM is 40 pg/mL urine (∼150 fmol/mL). The level
of quantitation is the concentration at which we know we have
acceptably low coefficients of variation (CV’s) because of suffi-
ciently high signal-to-noise ratios. Our level of detection, which
is the “sensitivity” reported in the literature for most steroid hor-
mone assays, is ∼4 pg/mL urine (∼15 fmol/mL). Accuracy, based on
percent recovery of a known amount of unconjugated EM added to
charcoal-stripped human urine, is 96–107%. Calibration curves are
linear over a 103-fold concentration range. At this point in time, we

are relying on five stable isotopically labeled standards for the 15
EM: deuterated estradiol, 2-hydroxyestradiol, 2-methoxyestradiol,
estriol, and 16-epiestriol.

Using overnight urines from five follicular phase and five luteal
phase premenopausal women, five postmenopausal women, and
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ve men, we conducted a formal “proof of performance” of our
rinary EM assay by measuring two randomized, blinded aliquots
rom each subject in each of four batches over four weeks [18]. None
f the women were currently using exogenous hormones, such as
ral contraceptives or menopausal hormone therapy. Laboratory
V’s, which included the hydrolysis, extraction, and derivatization
teps as well as within and between batch variation, were ≤10% for
ach of the 15 EM, and generally ≤5%. Intraclass correlation coef-
cients (ICC’s) within each menstrual/sex group, a measure of the
ariability attributable to interindividual differences, were gener-
lly ≥0.98. Thus, within each menstrual/sex group, the range in
oncentration of each EM was quite large relative to assay vari-
bility. The ICC’s may be somewhat imprecise because of the small
umber of participants in the study but were remarkably consistent
cross the four menstrual/sex groups.

For descriptive analyses, we combined data from an addi-
ional 25 subjects with the data from these 20 subjects [18].
lthough geometric mean EM concentrations (pg EM/mg creati-
ine) differed substantially among the four menstrual/sex groups,
he rankings of the individual EM were quite similar, with
striol, 2-hydroxyestrone, estrone, estradiol, and 16-ketoestradiol

ccounting for 60–75% of total urinary EM. The three catechol estro-
ens comprised 20–25% of total EM, while the five methylated
atechol estrogens were 5–10%. What was especially exciting was
hat within each menstrual/sex group, interindividual differences
n urinary EM concentrations, which reflect interindividual differ-

ig. 3. Interindividual variation in urinary concentrations of catechol estrogens and es
ith box plots for 10 premenopausal follicular phase women, 10 premenopausal luteal p

re in pg/mg creatinine and presented on a logarithmic scale. The first graph summariz
ydroxyestrone (2-OHE1), 2-hydroxyestradiol (2-OHE2), and 4-hydroxyestrone (4-OHE1).
M: 2-methoxyestrone (2-MeOE1), 2-methoxyestradiol (2-MeOE2), 2-hydroxyestrone-3-m
eOE2). The third graph summarizes interindividual variation of the 16-pathway EM: 16�

16-ketoE2), and 16-epiestriol (16-epiE3). The horizontal line within each box is the med
75 and 25 percentiles, respectively) of the distribution. The vertical lines above and be
nterquartile range). Outliers are represented as stars (>1.5 but ≤3 times the interquartile
& Molecular Biology 121 (2010) 538–545 541

ences in EM production and excretion, were consistently large, with
a range of 10–100-fold for nearly all EM. This interindividual vari-
ation is highlighted in Fig. 3, which shows box plots of urinary
concentrations of the three catechol EM, the five methylated cate-
chol EM, and the five 16-pathway EM for each menstrual/sex group.
EM concentration is plotted on a logarithmic scale, with a different
scale for each boxplot.

At this point, we knew that interindividual variability in uri-
nary EM concentrations was substantially larger than laboratory
variation. However, we did not know whether variation in uri-
nary EM levels in an individual over secular time would limit our
ability to identify associations with risk when we relied upon a
single urine collection, as is typical of most epidemiologic stud-
ies. Dr. Sue Hankinson at Harvard School of Public Health had
collected urine samples in the Nurses’ Health Study II cohort
that were appropriate for addressing this question. With Dr.
Heather Eliassen, also at Harvard, we examined the reproducibil-
ity of urinary EM concentrations in 110 premenopausal women
with luteal phase urine samples collected during each of three
years [19]. On average, parent EM (estrone and estradiol) were
21% (5th–95th percentiles = 12–34%) of total urinary EM and 2-

pathway, 4-pathway, and 16-pathway EM were 36% (12–62%), 4%
(1–8%), and 39% (17–67%), respectively; interindividual variation in
estrogen metabolism was clearly apparent. Reproducibility within
a woman over time was relatively high for the three hydroxylation
pathways, with ICC’s ranging from 0.52 (16-pathway EM) to 0.57

trogen metabolites (EM), methylated catechol EM, and 16-pathway EM is shown
hase women, 15 postmenopausal women, and 10 men. Urinary EM concentrations
es interindividual variation of the catechol EM, shown in the following order: 2-
The second graph summarizes interindividual variation of the methylated catechol
ethyl ether (3-MeOE1), 4-methoxyestrone (4-MeOE1), and 4-methoxyestradiol (4-

-hydroxyestrone (16�-OHE1), 17-epiestriol (17-epiE3), estriol (E3), 16-ketoestradiol
ian of the distribution. The top and bottom of each box are the interquartile range
low each box extend to the extreme values that are not outliers (≤1.5 times the
range) and open circles (>3 times the interquartile range).
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4-pathway EM) to 0.72 (2-pathway EM), which were as high as
r higher than the ICC’s for estrone and estradiol (∼0.5). ICC’s for
he individual catechol EM and 2-pathway methylated catechol EM
ere comparably high. Because of their low concentrations, ICC’s

or the individual methylated catechol EM in the 4-pathway were
elatively low (<0.3). Converting absolute EM concentrations (pmol
M/mg creatinine) to relative concentrations (pmol EM expressed
s percent of total EM in pmol) noticeably improved the ICC’s.
hese data indicate that urinary EM levels do vary substantially
mong individuals when compared to intraindividual variability.
t is encouraging that reproducibility in premenopausal women
ver time for most individual and grouped EM is comparable to
r better than that of well-vetted biomarkers, such as circulating
holesterol (ICC = 0.65); blood glucose (ICC = 0.52); and, in post-
enopausal women, plasma estradiol (ICC = 0.68), all of which are

onsidered to be reliable predictors of disease in epidemiologic
tudies [19].

We also evaluated Spearman correlations among the EM [19].
rinary estrone was only moderately correlated with the indi-
idual estrogen metabolites (most rs = 0.3–0.6), while correlations
etween urinary estradiol and the individual metabolites were still

ower (rs = 0.1–0.4). However, individual EM within a pathway were
airly highly correlated. The 2-pathway EM and 4-pathway EM
ere highly correlated (rs = 0.9), but both pathways were weakly

nd inversely correlated with the 16-pathway EM (rs = −0.2). These
ata suggest that urinary concentrations of the parent EM, estrone
nd estradiol, do not accurately represent the concentrations of
ndividual estrogen metabolites. Potentially important additional
nformation is obtained when the entire estrogen metabolism pro-
le is measured in urine.

In preparation for large-scale epidemiologic studies, we have
tudied the stability of the 15 EM in urine samples, with and with-
ut added ascorbic acid (0.1% w/v), during (1) interim storage at
◦C, (2) long-term storage at −80 ◦C, and (3) freeze-thaw cycles

20]. Early morning urine specimens were provided by three pre-
enopausal women. We saw no consistent evidence of >1% loss for

ny of the EM during interim storage for 24 h, long-term storage for
ne year, or two additional freeze-thaw cycles in the samples with-
ut added ascorbic acid. Given the large interindividual variability
n urinary EM concentrations we have observed [18], these changes
re unlikely to cause substantial misclassification in epidemiologic
esearch. To our surprise, ascorbic acid, an antioxidant which has
een suggested in the literature as necessary to protect specific EM
21,22], had no clear beneficial effects on individual EM stability in
ny of these experiments. Therefore, for epidemiologic and clini-
al studies that will be collecting urine samples in which EM will
e measured, we suggest immediately chilling the urine sample to
◦C on collection, or the individual portions of urine if a 12- or 24 h
ollection is planned; keeping the urine at 4 ◦C for no more than
–2 days before decanting and aliquotting for long-term storage at
70 ◦C; and adding no preservatives or antioxidants.

This stability study validated the urine collection and storage
rocedures we had already used in several epidemiologic stud-

es in which we wished to measure EM in prospectively stored
rine samples and assess associations with subsequent cancer.

n epidemiologic studies of endogenous hormones and hormone
etabolism, urine samples offer some distinct advantages over

lood, including ease of biospecimen collection, potentially higher
articipation rates, and the integration of exposure over time for
ormones with pulsatile, circadian, or menstrual cycle variability.
. EM in blood

In 2007, we published the details of our LC–MS2 technique for
he simultaneous measurement of the absolute quantities of serum
& Molecular Biology 121 (2010) 538–545

EM [15]. In exploratory work, we had found, to our surprise, that all
15 EM we had detected in urine (Fig. 1) were also present in serum
in conjugated form, as sulfates or glucuronides, and that five of the
EM were present at quantifiable levels in unconjugated, or free,
form. Therefore, to accurately capture the concentration of total
endogenous estrogen in circulation and the concentrations of all
individual EM, we decided that for serum samples, we would do two
LC–MS2 analyses: one of total (conjugated + unconjugated) EM and
one of unconjugated EM. Unconjugated EM are measured by elim-
inating the enzymatic hydrolysis step in our method; total EM are
measured by including enzymatic hydrolysis; conjugated EM can
be calculated as the difference of the two analyses. To enhance accu-
racy, stable isotopically labeled EM standards are added to 1.0 mL
serum samples. Two 0.4 mL aliquots are created from each 1.0 mL
sample; only one of the two aliquots is hydroyzed. Both aliquots
are then extracted, derivatized, and analysed independently by
LC–MS2.

Except for the change described above, where we measure both
total and unconjugated EM in each sample, our method for mea-
suring all 15 EM concurrently in serum is similar to our method
for urinary EM. A total of 1.0 mL of serum is required to measure
both total and unconjugated EM. We currently use newer LC–MS2

systems for the serum analyses than the urine analyses, which
has resulted in a 5-fold increase in sensitivity. The lower level of
quantitation for each EM is 8 pg/mL serum (26.5–29.6 fmol/mL).
The level of detection, which is the “sensitivity” reported in the
literature for most steroid hormone assays, is ∼0.8 pg/mL serum
(<3 fmol/mL). Accuracy, based on recovery of a weighed amount of
unconjugated EM added to charcoal-stripped serum, is 91–113%.
Calibration curves are linear over a 103-fold concentration range.
We are currently relying on six stable isotopically labeled standards
for the 15 EM: deuterated 2-hydroxyestradiol, 2-methoxyestradiol,
estriol, and 16-epiestriol and C-13 labeled estrone and estradiol.

We have not yet completed stability studies of individual EM
in serum during interim and long-term storage comparable to the
stability studies we performed for urinary EM. For serum collection
and storage, we use the protocol adopted by most epidemiologic
studies. Blood is kept at room temperature for no more than an
hour as it clots; the serum is collected by pipetting or decanting
after centrifugation. Once the serum is aliquotted, it is stored at 4 ◦C
for no more than 12 h, and then transferred to −70 ◦C for long-term
storage. No antioxidants or preservatives are used. It is generally
accepted that parent EM in serum or plasma are stable for up to 3
days during interim storage at 4 ◦C, and for years during long-term
storage at −70 ◦C. [23].

It is the extremely high sensitivity of our LC–MS2 assay—a
level of quantitation for each EM of 8 pg/mL serum and a level of
detection of ∼0.8 pg/mL serum—that enables us to measure circu-
lating estrogens in postmenopausal women. Distinguishing serum
estradiol levels in the low postmenopausal range (<30 pg/mL;
<110 fmol/mL) is an important prognostic tool for common chronic
diseases of older women, specifically breast cancer, osteoporosis,
cardiovascular disease, and possibly cognitive dysfunction [24].
The ability to measure serum estradiol with high sensitivity and
specificity is particularly important in monitoring postmenopausal
women with hormone-dependent breast cancers who are receiv-
ing aromatase inhibitors. Suppression of estrogen production may
be influenced by non-compliance, hidden drug–drug interactions,
and genetically altered pharmacokinetics and can promote severe
bone loss [25]. Both indirect RIA methods, which include extraction
and/or chromatography, and direct RIA methods are not accurate

or sensitive enough to monitor serum estradiol at these low lev-
els [25]. Bioassays that rely on recombinant yeast methods and
HeLa cells may be more sensitive than RIA but lack specificity and
convenience [25]. Gas chromatography/tandem mass spectrome-
try provides the needed specificity, sensitivity, and accuracy, but
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Fig. 4. Mean serum concentrations of unconjugated and conjugated forms of
15 estrogens and estrogen metabolites (EM) in eight postmenopausal women.
Serum concentrations, in fmol/mL, are plotted on a logarithmic scale. Conju-
gated forms of each EM are represented by the white section of the bar graph;
unconjugated forms are represented by the dark section of the bar graph. Total
concentration of each EM is represented by the entire bar graph. The stan-
dard error of the mean for total EM concentration is shown by the thatch
marks. Parent EM include estrone (E1) and estradiol (E2). 2-pathway EM include
2-hydroxyestrone (2-OHE1), 2-hydroxyestradiol (2-OHE2), 2-methoxyestrone (2-
MeOE1), 2-methoxyestradiol (2-MeOE2), and 2-hydroxyestrone-3-methyl ether
(3-MeOE1). 4-pathway EM include 4-hydroxyestrone (4-OHE1), 4-methoxyestrone
(
h
(

d
e
e
p
v

s
t
d
a
t
(

i
a
g
w
s
o
m
t
t
w
a
e
b
d
t
h
f
e
c
c
b
t
a
C

postmenopausal women (all p < 0.0001) (Table 1). Geometric mean
4-MeOE1), and 4-methoxyestradiol (4-MeOE2). 16-pathway EM include 16�-
ydroxyestrone (16�-OHE1), estriol (E3), 17-epiestriol (17-epiE3), 16-ketoestradiol
16-ketoE2), and 16-epiestriol (16-epiE3).

oes not match the tight CV’s of our LC–MS2 method [25]. How-
ver, before any mass spectrometry method can be used in a clinical
nvironment to measure estradiol or other EM, detailed reference
rotocols, calibration and validation requirements, and normative
alues need to be developed [26].

We have completed a formal “proof of performance” for our
erum EM assay in eight postmenopausal women not on hormone
herapy. Two samples from each of the eight women were analysed
uring each of four weeks. Laboratory CV’s were ≤5% for all total
nd unconjugated EM, except for the two EM at the lowest concen-
rations: total 4-methoxyestradiol (CV = 6%) and total 17-epiestriol
CV = 7%).

The descriptive data from this “proof of performance” were
ntriguing, and are summarized in Fig. 4. This bar graph shows for
ll 15 EM the mean serum concentrations, in fmol/mL, of conju-
ated, unconjugated, and total EM for the eight postmenopausal
omen. Concentrations are shown on a logarithmic scale, and the

tandard error of the mean for total EM is included. In general,
nly circulating levels of estrone sulfate, estrone, and estradiol are
easured in epidemiologic and clinical studies. However, these

hree EM are just a fraction of the physiologic complexity. In all
hese women, all 15 EM we had previously characterized in urine
ere also present in serum. The molar concentration in serum of

ll 15 EM combined was generally more than three times that of
strone sulfate, a biologically inactive estrogen which is thought to
e the estrogen reservoir and can be converted to estrone and estra-
iol in breast and other target tissues [27]. For each of the 15 EM,
he molar concentration of the conjugated form was substantially
igher than the molar concentration of the unconjugated form; in

act, we detected only five unconjugated EM in circulation: estrone,
stradiol, estriol, 2-methoxyestrone, and 2-methoxyestradiol. We
ould not detect any of the potentially mutagenic and genotoxic
atechol estrogens in circulation. Estradiol itself, considered the

iologically active form of estrogen and the predominant activa-
or of estrogen receptor-mediated cellular processes, was more
bundant conjugated than unconjugated in most of the women.
onjugated estradiol is not currently measured by the indirect or
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direct RIA assays for estradiol so its influence is generally not eval-
uated. Yet conjugated estradiol concentrations may be biologically
relevant since breast and other tissues contain sulfatases and glu-
curonidases that can generate biologically active estradiol from
conjugated estradiols in circulation. Evidence is increasing that sul-
fation/desulfation of EM represents a cyclic system important in the
regulation of biologically active estrogen in target tissue, while glu-
curonidation is the major pathway for estrogen excretion in urine
and bile [8,28].

We are currently expanding this “proof of performance” for
our serum EM assay to include premenopausal women and men.
While the laboratory CV’s will be interesting, the descriptive data
for total, conjugated, and unconjugated EM in circulation may well
be unique.

In trying to measure patterns of endogenous estrogen
metabolism, we have focused on 15 specific EM in conjugated and
unconjugated form, primarily the EM reported in early studies of
urinary EM. It is these EM for which we routinely include purified
standards in all our LC–MS2 runs. In the future, we will have the
opportunity to modify our method and utilize it to identify addi-
tional EM present in human urine and serum, including those due
to rare gene variants, environmental and lifestyle exposures, and
disease/treatment. We have not yet used the structure identifica-
tion properties of mass spectrometry to identify provocative peaks,
nor have we obtained a library of standards for additional EM that
might be present.

6. Comparing EM measurement by RIA or ELISA and by
LC–MS2

Absolute and relative EM concentrations are important for clin-
ical decisions, as well as epidemiologic and experimental research
on hormonal carcinogenesis. RIA, EIA, and ELISA are routinely
used for measuring EM in blood and urine because of their effi-
ciency, simplicity, and low cost. We wanted to compare these
widely accepted, commercially available methods with our new
LC–MS2 technique. In a population-based case-control study of
breast cancer in Asian–American women aged 20–55 years [29],
we had measured five EM in 12 h overnight urines collected
from 362 premenopausal and 168 postmenopausal controls. We
had chosen state-of-the-art methods and experienced laboratories
widely used by epidemiologists and clinicians. Estrone, estradiol,
and estriol were assayed at Nichols Institute (San Juan Capis-
trano, CA) with an indirect method involving enzymatic hydrolysis,
extraction, chromatography, and RIA [30]. 2-Hydroxyestrone and
16�-hydroxyestrone were assayed at Strang Cancer Research
Laboratory (New York, NY) with a method involving enzymatic
hydrolysis and ELISA [31,32]. Recently we re-assayed the same
urines with our LC–MS2 method and compared the absolute and
relative results with those obtained earlier by RIA and ELISA [33].
For the premenopausal women, ranking subjects by RIA-based
measures of urinary estrone, estradiol, and estriol agreed quite well
with those obtained using LC–MS2 (rs > 0.9), while ranking subjects
by ELISA-based measures of urinary 2-hyroxyestrone and 16�-
hydroxyestrone agreed reasonably well with LC–MS2 (rs = 0.8–0.9)
(Table 1). However, for the postmenopausal women, agreement
was noticeably reduced for all five EM (rs = 0.4–0.8).

Geometric mean concentrations (pmol/mg creatinine) of
estrone, estradiol, and estriol were 1.4–1.9 times higher by RIA
than LC–MS2 in premenopausal women, and 1.4–2.7 higher in
concentrations of 2-hydroxyestrone and 16�-hydroxyestrone were
2.0–3.7 times higher by ELISA than LC–MS2 in premenopausal
women, and 2.7–11.8 times higher in postmenopausal women (all
p < 0.0001). These data suggested the RIA and ELISA assays had lim-
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Table 1
Comparison of urinary estrogen/estrogen metabolite (EM) measurement by RIA/ELISA and LC–MS2: Spearman correlations and absolute concentrationsa.

EM Premenopausal
luteal phase women

Premenopausal
non-luteal phase women

Postmenopausal
women

N = 264 N = 98 N = 168

Spearman correlations

RIA and LC–MS2

Estrone 0.94 0.96 0.79
Estradiol 0.91 0.95 0.63
Estriol 0.94 0.94 0.73

ELISA and LC–MS2

2-Hydroxyestrone 0.81 0.89 0.37
16�-Hydroxyestrone 0.86 0.89 0.62

Geometric mean concentrations (pmol/mg creatinine)

RIA or ELISA/LC–MS2 RIA or ELISA/LC–MS2 RIA or ELISA/LC–MS2

RIA and LC–MS2

Estrone 41.9/23.4 27.9/14.6 6.9/2.6
Estradiol 17.6/10.9 12.0/7.7 2.1/1.5
Estriol 77.2/55.5 50.1/31.2 12.9/5.7

ELISA and LC–MS2

2-Hydroxyestrone 47.8/24.6 31.0/13.8 18.6/2.9
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16�-Hydroxyestrone 32.2/11.0

a Subjects are Asian–American women, aged 20–55 years, selected as controls for
ollected.

ted specificity and accuracy, and were detecting additional EM or
ther steroids.

Based on the blinded quality control samples that we had
nserted for all the assays, laboratory CV’s for estrone, estradiol,
nd estriol were ≤13% for RIA in premenopausal women, ≤18% for
IA in postmenopausal women, and ≤5% for LC–MS2 in both pre-
enopausal and postmenopausal women [33]. Laboratory CV’s for

-hydroxyestrone and 16�-hydroxyestrone were ≤14% for ELISA in
oth premenopausal and postmenopausal women, ≤5% for LC–MS2

n premenopausal women, and ≤9% for LC–MS2 in postmenopausal
omen. Thus, our results for reproducibility, as well as accuracy,

ndicated that the widely used RIA and ELISA measures for EM
ight be problematic, particularly at the low concentrations char-

cteristic of postmenopausal women. Although this comparison of
tate-of-the-art commercial assays with LC–MS2 was performed
ith urine samples, it is plausible that in serum, a more compli-

ated matrix, the commercial assays would perform even less well,
elative to LC–MS2.

. Future directions

We continue to optimize our EM LC–MS2 methods and refine
hem for the demands of large-scale epidemiologic research. We
re concentrating on three issues. (1) At present, we are using either
ve or six stable isotopically labeled standards in our LC–MS2 meth-
ds for measuring 15 EM. In our laboratory, as soon as urines or
era are defrosted for assay, we add the stable isotopically labeled
M standards so that we can correct quantitatively for loss and
egradation. Ideally, stable isotope dilution requires a distinct iso-
opically labeled standard for each analyte so that we do not need
o extrapolate results from structurally similar, but not structurally
dentical, compounds. We have now acquired 12 C-13 labelled stan-
ards and will be testing and incorporating them into our assays. (2)
ur current throughput per week on one LC–MS2 system is only 40

nknowns (which includes ∼4 blinded quality control samples) + 8
nown quality control samples + 14 samples for two calibration
urves = 62 samples, only 58% of which are really unknowns. We
an receive “real-time” information each week on assay perfor-
ance from the known quality control samples. Nonetheless, this
23.8/6.5 14.1/1.2

ulation-based case-control study of breast cancer [29]. 12 h overnight urines were

throughput means that it would require 25 weeks on each of two
LC–MS2 systems to measure both total and unconjugated EM con-
centrations in 1000 serum samples. Clearly, throughput needs to
be improved. We are currently testing some faster liquid chro-
matography systems potentially capable of increasing throughput
3-fold. (3) We have established standard operating procedures
for our methods and carefully described the optimized tech-
niques in publications. However, to the extent that personnel may
need practical “hands-on” experience before they can successfully
implement the assays, we need to clarify, and possibly simplify, our
procedures.

While our LC–MS2 methods for measuring EM in serum and
urine are still being improved, they have been validated and are
robust and rapid and, therefore, appropriate for epidemiologic
work. We can assess total estrogen exposure, concentrations of
specific EM, and individual patterns of estrogen metabolism in
epidemiologic studies. In a population-based case-control study
of breast cancer in Asian–American migrants, we have explored
the relationship between urinary EM and Westernization in the
controls. Within these controls, Westernization predicts a 6-fold
gradient in risk of breast cancer, comparable to the historic inter-
national differences in breast cancer incidence between Asia and
the U.S. [29]. We have completed two nested case-control studies
of EM and breast cancer in large cohorts. The first, in collaboration
with Drs. Hankinson and Eliassen, is of premenopausal breast can-
cer and utilizes prospectively stored urines from the Nurses’ Health
Study; the second is of postmenopausal breast cancer and utilizes
prospectively stored serum samples from the Prostate, Lung, Col-
orectal, and Ovarian Cancer Screening Trial (PLCO) cohort. We are
designing a nested case-control study of endometrial cancer and
circulating EM that will pool biospecimens from PLCO and other
cohorts. In collaboration with Drs. Kala Visvanathan and James
Yager at Johns Hopkins School of Medicine, we are testing methods
to measure EM in breast tissue and will examine the relationships

among conjugated and unconjugated EM in breast tissue, blood,
and urine.

Our LC–MS2 methods for measuring concurrently 15 EM in
serum and urine provide outstanding accuracy, precision, sensi-
tivity, and specificity. However, the methods are still relatively
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abor-intensive and time consuming. We hope to apply our meth-
ds in important epidemiologic research where the quality of the
tudy design and potential impact of the results justify the use of
ur methods. We anticipate that the application of our techniques
n epidemiologic research will inform further modification of our

ethods. Perfecting a method should not be an end in itself. Most
mportant, the results from our expanding portfolio of epidemio-
ogic studies that have utilized these methods should help clarify
he role of endogenous estrogen exposure and estrogen metabolism
n the etiology of cancer.
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